

Rainfall Extremes and Projections

14th January 2026

Barry Coonan, Darshana Jayakumari

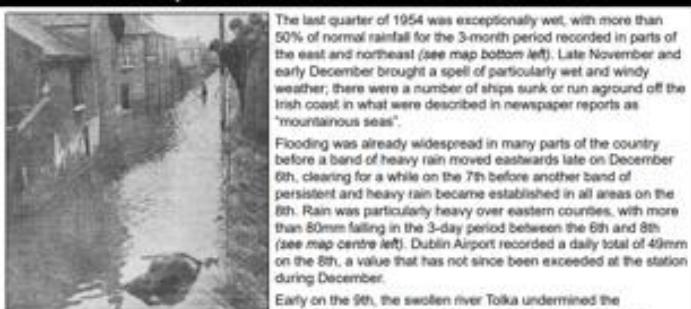
Climate Services Division

Met Éireann

IAH CPD - Groundwater, Hydrology and Climate Change

An Roinn Tithíochta,
Rialtais Áitiúil agus Oidhreachta
Department of Housing,
Local Government and Heritage

OPW


agenda

- Introduction to extremes
- Extreme Value Theory
- Extreme rainfall example
 - Dublin Airport 24-hour rainfall
- Extremes in a changing climate
 - Extremes with projections

200-year anniversary of severe Dublin flooding

Although the newspaper account of widespread flooding in Dublin shown on the right could refer to the recent past in Dublin, it is actually a 200-year old report taken from *Walker's Hibernian Magazine* of December 1802. The 'heavy and unremitting rain' referred to was a fall of 75mm in a 30-hour period over the 2nd and 3rd of that month, which led to what F.E. Dixon described in his 1953 article *Weather in Old Dublin* as 'the most serious of all Dublin floods'. This amount represents what would normally be expected to fall in the entire month of December in Dublin. Most of what was then the central area of the city was covered by floodwater, with 3 metres of water reported in the lower Castle Yard and Patrick Street, where 'boats were plying to save the lives of poor people'.

Widespread floods of December 1954

The last quarter of 1954 was exceptionally wet, with more than 50% of normal rainfall for the 3-month period recorded in parts of the east and northeast (see map bottom left). Late November and early December brought a spell of particularly wet and windy weather; there were a number of ships sunk or run aground off the Irish coast in what were described in newspaper reports as 'mountainous seas'.

Flooding was already widespread in many parts of the country before a band of heavy rain moved eastwards late on December 6th, clearing for a while on the 7th before another band of persistent and heavy rain became established in all areas on the 8th. Rain was particularly heavy over eastern counties, with more than 80mm falling in the 3-day period between the 6th and 8th (see map centre left). Dublin Airport recorded a daily total of 49mm on the 8th, a value that has not since been exceeded at the station during December.

Early on the 9th, the swollen river Tolka undermined the foundations of the railway bridge across the river at Fairview (below). The collapsed bridge then formed a barrier across the river, causing water to flow out across a very wide area; approximately 1,500 houses accommodating 2,000 families were affected by the flood waters and several hundred people were forced to evacuate their homes. There was extensive flooding elsewhere across the city, particularly in the Kilmainham area along the river Camac, while the Shannon reached its highest level since 1925 and many thousands of acres of farmland were inundated. There were also reports of widespread power outages on the 8th, with further disruption caused by heavy falls of snow in parts of the midlands and northwest, pictures in Time

3-day rainfall (mm/mm) December 1954

3-month percentage of normal rainfall December 1954

3-month percentage of normal rainfall December 1954

Storm of 11/12th January 1974 : Summary of newspaper reports of damage

Kerry: Two mile line of trees in Muckross National Park flattened. A Spanish trawler went ashore at Valentia and another trawler sank at Fenit. The railway line near Headford collapsed in a landslide. Widespread wreckage of caravans.

Cork: High tides and severe flooding in city area in advance of storm. Premises of William Transport Group at Cork Airport demolished and Joyce Aviation hangar with several light aircraft damaged. Roof blown off grainstore at Midleton. Roof of an incomplete factory at Charleville blown across a field some of it landing on top of a 30 ft. tree. Fermoy reported many trees down in the town and plate glass windows broken. Caravan blown over a 5 ft. wall at Blackrock. Holiday caravans wrecked in many places. Bandon and Kinsale areas reported extensive damage to dwellings and outhouses. Much glass breakage at nurseries at Upton and Ardkeena. Lightning killed several cattle near Nohoval.

Home / Weather

LATEST | Storm Babet: Millions of euro in damage as army deployed to parts of Cork and new rain warning issued for Dublin

Ralph Riegel

Wind 10 Oct 2023 at 21:30

Millions of euro-worth of damage has been left in the wake of Storm Babet as parts of Ireland suffered its worst rainfall related flooding in over a decade.

Cork was worst hit by the torrential downpours which dumped over a month's worth of rain in less than 24 hours - swamping drainage systems.

Parts of the south received over 100mm of rainfall in less than 36 hours - with fields, streams and rivers already swollen from recent heavy rainfall unable to handle the deluge.

STORM AND INUNDATION.

Der. 4.] The tempestuous weather experienced from Wednesday night till late on Thursday, together with the heavy and unremitting rain during that period, have produced various disastrous occurrences near the metropolis, and in the interior of the country. Some mills and other works a few miles from the capital, situated within the range of the flood, have been materially injured, and in some instances altogether destroyed.—We are concerned to state, among the damage of this kind effected in the neighbourhood of the capital, that the backs, weirs, &c. at Old Bawn paper-mills, are entirely swept away.—Nearly an acre and an half of Mr. Wildridge's meadow, adjacent to the mills, has been severed from the rest by the violence of the flood, and carried completely off !

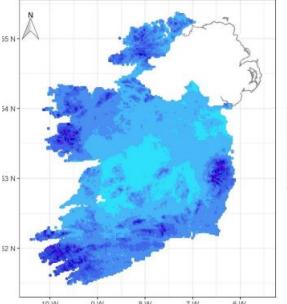
The Belfast mail-coach was yesterday morning, in coming to town, obliged to stop from five o'clock until nine, upon the road between Tully

The heavy rainfall caused flooding in many parts of Dublin and the east coast, flooding roads and causing lengthy traffic delays. Several flights were delayed or cancelled at Dublin Airport.

Many homes and businesses were under water by Monday evening. Dublin City Council activated a major emergency plan to deal with the floods. Tragically two deaths were attributed to this rainfall event, with damage to Dublin homes, businesses and infrastructure estimated to be worth millions of Euro.

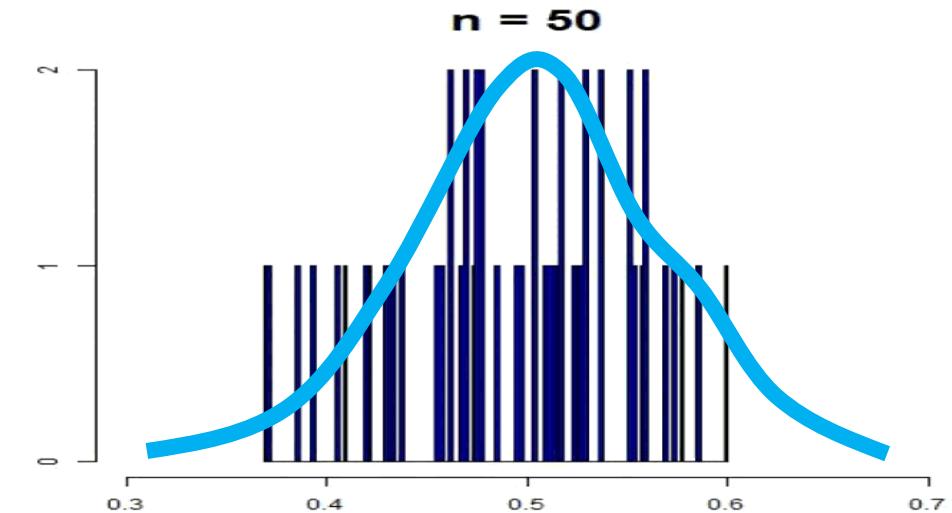
Flooding in Midleton Garda Station during Storm Babet

Gridded Rainfall 2023
Sunday 1 January to Sunday 31 December 2023 inclusive


Source: Met Éireann (Mon 8 Jul 2024) | Climatological Standard Normals Period 1981-2020

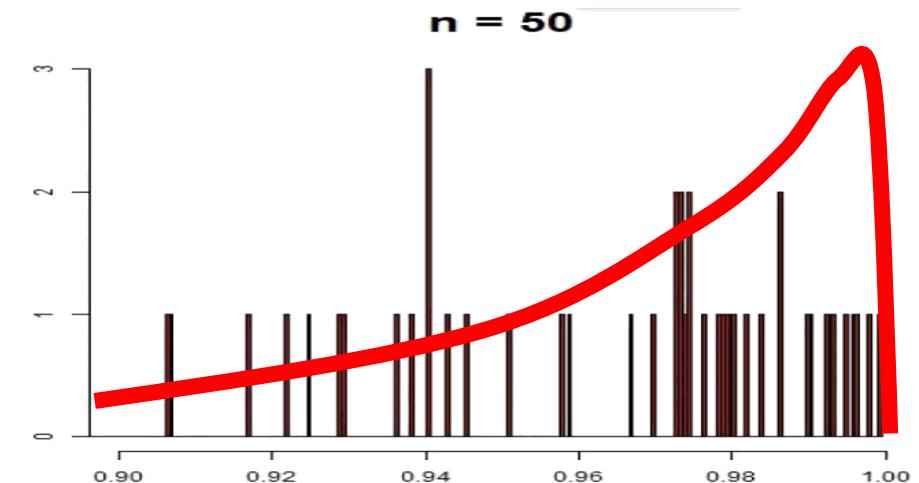
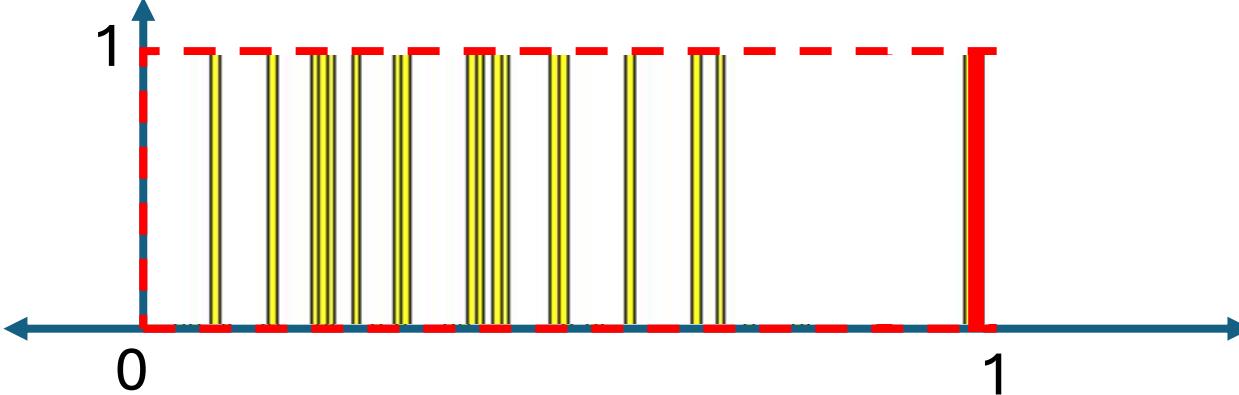
Extremes analysis applications

Building standards



ESTIMATION OF POINT RAINFALL FREQUENCIES IN IRELAND

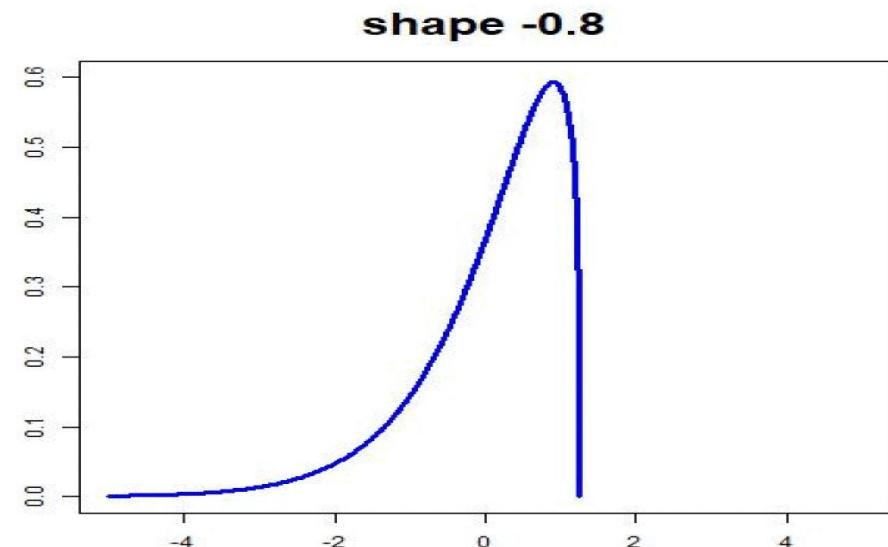
DURATION	Interval	Years											
		2	3	4	5	10	20	30	50	70	100	120	
5 min	3.0, 4.0, 4.5	3.2	3.3	3.8	4.1	7.3	8.7	9.5	14.7	11.7	12.5	13.2	
10 min	4.0, 4.5, 5.0	4.2	4.3	4.8	5.0	8.4	9.6	10.0	14.2	15.6	17.5	19.2	
15 min	4.5, 5.0, 5.5	4.7	4.8	5.4	5.6	9.4	10.0	10.5	14.5	15.6	17.5	19.4	
30 min	5.0, 5.5, 6.0	5.2	5.3	5.9	6.0	10.0	10.5	11.0	15.0	16.2	18.0	19.5	
1 hour	8.5, 11.0, 11.5	13.0	13.5	14.4	14.5	18.4	19.2	20.8	24.4	26.7	25.8	34.6	
2 hours	12.0, 15.0, 15.5	18.0	18.5	19.4	19.5	23.0	23.5	23.1	27.1	27.4	26.9	34.0	
3 hours	22.0, 25.0, 25.5	23.0	23.5	23.6	23.7	25.6	27.1	27.4	30.7	31.9	45.6	52.7	
4 hours	28.0, 31.0, 31.5	27.0	27.5	28.4	28.5	31.8	32.1	32.1	35.4	36.7	49.6	54.7	
8 hours	38.0, 42.0, 42.5	37.0	37.5	38.4	38.5	41.8	42.2	42.2	45.5	46.8	49.6	52.7	
12 hours	48.0, 52.0, 52.5	35.0	35.5	36.4	36.5	40.8	41.2	41.2	44.5	45.8	48.6	51.7	
24 hours	58.0, 62.0, 62.5	35.0	35.5	36.4	36.5	40.8	41.2	41.2	44.5	45.8	48.6	51.7	
36 hours	63.0, 67.0, 67.5	47.0	47.5	48.4	48.5	52.1	52.5	52.5	55.8	57.1	59.9	62.9	
48 hours	68.0, 72.0, 72.5	47.0	47.5	48.4	48.5	52.1	52.5	52.5	55.8	57.1	59.9	62.9	
72 hours	73.0, 77.0, 77.5	47.0	47.5	48.4	48.5	52.1	52.5	52.5	55.8	57.1	59.9	62.9	
120 hours	107.0, 110.0, 110.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
168 hours	110.0, 113.0, 113.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
240 hours	113.0, 116.0, 116.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
360 hours	116.0, 119.0, 119.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
720 hours	121.0, 124.0, 124.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
1440 hours	124.0, 127.0, 127.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
2880 hours	127.0, 130.0, 130.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
5760 hours	130.0, 133.0, 133.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
11520 hours	133.0, 136.0, 136.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
23040 hours	136.0, 139.0, 139.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
46080 hours	139.0, 142.0, 142.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
92160 hours	142.0, 145.0, 145.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
184320 hours	145.0, 148.0, 148.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
368640 hours	148.0, 151.0, 151.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
737280 hours	151.0, 154.0, 154.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
1474560 hours	154.0, 157.0, 157.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
2949120 hours	157.0, 160.0, 160.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
5898240 hours	160.0, 163.0, 163.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
11796480 hours	163.0, 166.0, 166.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
23592960 hours	166.0, 169.0, 169.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
47185920 hours	169.0, 172.0, 172.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
94371840 hours	172.0, 175.0, 175.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
188743680 hours	175.0, 178.0, 178.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
377487360 hours	178.0, 181.0, 181.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
754974720 hours	181.0, 184.0, 184.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
1509949440 hours	184.0, 187.0, 187.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
3019898880 hours	187.0, 190.0, 190.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
6039797760 hours	190.0, 193.0, 193.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
12079595200 hours	193.0, 196.0, 196.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
24159190400 hours	196.0, 199.0, 199.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
48318380800 hours	199.0, 202.0, 202.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
96636761600 hours	202.0, 205.0, 205.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
193273523200 hours	205.0, 208.0, 208.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
386547046400 hours	208.0, 211.0, 211.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
773094092800 hours	211.0, 214.0, 214.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
1546188185600 hours	214.0, 217.0, 217.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
3092376371200 hours	217.0, 220.0, 220.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
6184752742400 hours	220.0, 223.0, 223.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
12369505484800 hours	223.0, 226.0, 226.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
24739010969600 hours	226.0, 229.0, 229.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
49478021939200 hours	229.0, 232.0, 232.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
98956043878400 hours	232.0, 235.0, 235.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
197912087756800 hours	235.0, 238.0, 238.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
395824175513600 hours	238.0, 241.0, 241.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
791648351027200 hours	241.0, 244.0, 244.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
1583296702054400 hours	244.0, 247.0, 247.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
3166593404108800 hours	247.0, 250.0, 250.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
6333186808217600 hours	250.0, 253.0, 253.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
12666373616435200 hours	253.0, 256.0, 256.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
25332747232870400 hours	256.0, 259.0, 259.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
50665494465740800 hours	259.0, 262.0, 262.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
101330988914816000 hours	262.0, 265.0, 265.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
202661977829632000 hours	265.0, 268.0, 268.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
405323955659264000 hours	268.0, 271.0, 271.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	128.0	130.0	
810647911318528000 hours	271.0, 274.0, 274.5	115.0	117.0	118.0	118.5	121.0	121.5	121.5	126.0	127.0	1		



Extreme Value Theory

- Example: Sampling from a distribution – uniform (0, 1)
- Mean of a Sample
 - Central Limit Theorem
 - Distribution of sample means approaches normal distribution

Extreme Value Theory

- Example: Sampling from a distribution – uniform (0, 1)
- Maximum of a sample
 - Distribution of sample means approaches Extreme Value Distribution
 - Uniform Distribution => reversed Weibull Distribution
 - Upper bound, distribution tail towards $-\infty$

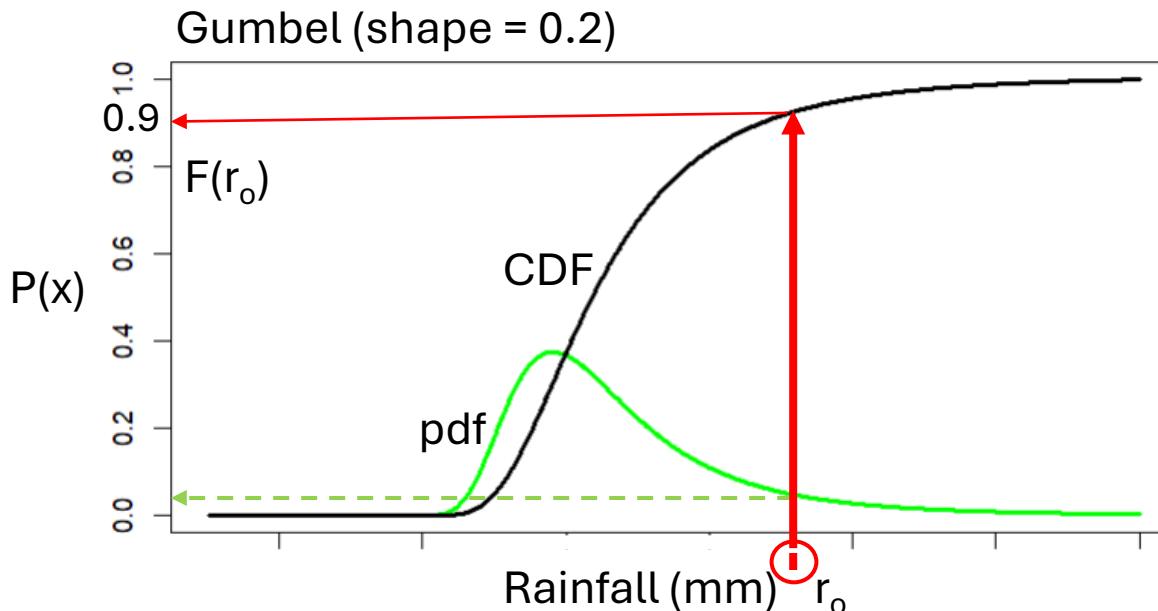

Extreme Value Theory

- Generalised Extreme Value distribution - pdf

$$f(x|\xi, \sigma, \mu) = (1 + \xi \left(\frac{x - \mu}{\sigma} \right))^{-\left(1 + \frac{1}{\xi}\right)} \exp\left(-\left(1 + \xi \left(\frac{x - \mu}{\sigma} \right) \right)^{-\frac{1}{\xi}} \right)$$

$\xi = \text{shape}$
 $\sigma = \text{scale}$
 $\mu = \text{location}$

Parent distribution	Shape	EVD	Type	Bound
Uniform	< 0	reversed Weibull	Type III	upper
Weibull (wind)	0	Gumbel	Type I	none
Gamma (rainfall)	> 0	Fréchet	Type II	lower

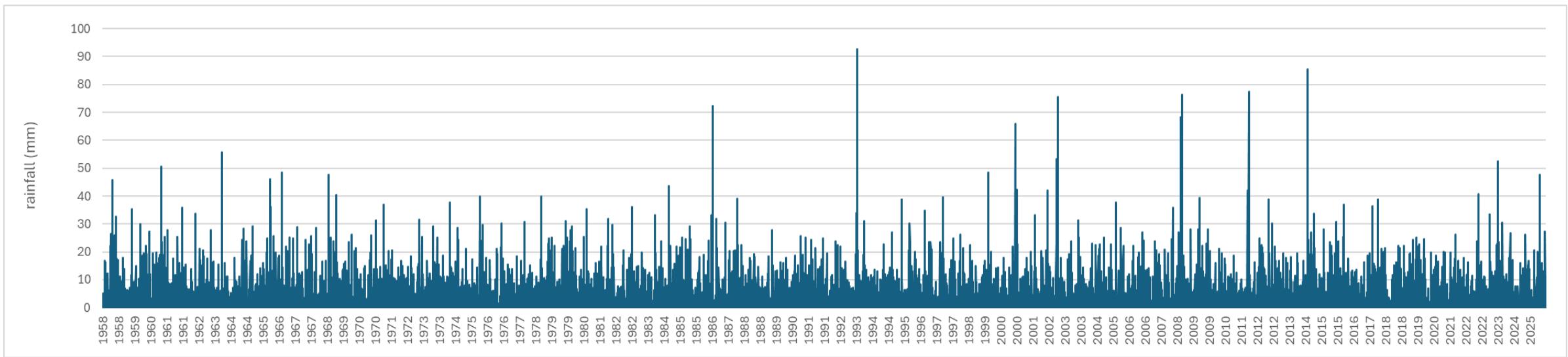


Extreme Value Theory

- Cumulative Distribution Function - calculation of exceedances

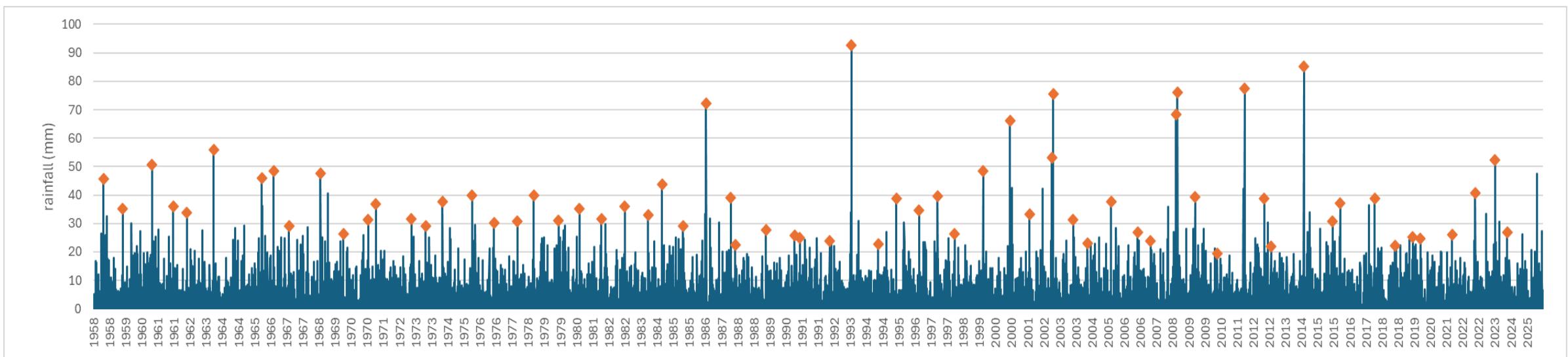
$$F(x|\xi, \sigma, \mu) = \exp\left(-\left(1 + \xi\left(\frac{x-\mu}{\sigma}\right)\right)^{-\frac{1}{\xi}}\right)$$

$\xi = \text{shape}$
 $\sigma = \text{scale}$
 $\mu = \text{location}$


Probability of non-exceedance = $F(r_o) = 0.9$

Probability of exceedance = $1 - F(r_o) = 0.1$

Return years = $1 / (1 - F(r_o)) = 10$ years


Example – Dublin Airport 24 hour rainfall

- Raw daily rainfall data over 68 years

Example – Dublin Airport 24 hour rainfall

- Annual maxima (block maxima – GEV distribution)

Annual Maxima dataset

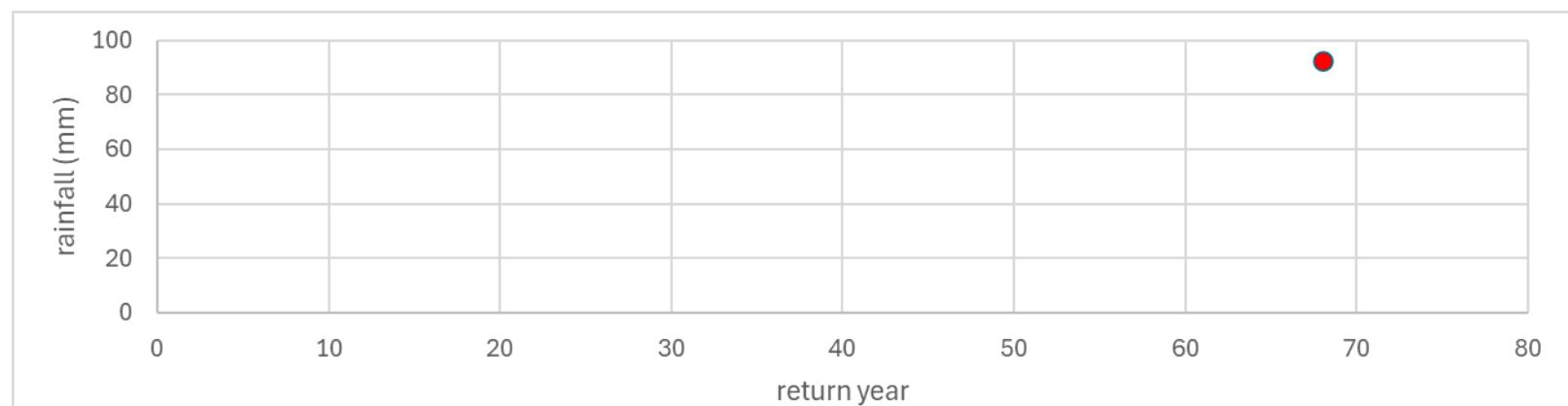
- Dublin Airport
 - 68 years of rainfall data (1958 – 2025)
 - 24 hour duration rainfall amounts
 - Analyse the annual maxima

year	month	day	24 hour rainfall (mm)
1958	6	25	45.8
1959	11	13	35.2
1960	10	2	50.6
1961	9	28	35.9
1962	9	26	33.7
1963	8	16	55.8
1964	8	16	28.3
1965	11	16	46.0
...
2025	7	21	47.6

Data ordering

- Ordered annual maxima

year	month	day	24 hour rainfall (mm)
1958	6	25	45.8
1959	11	13	35.2
1960	10	2	50.6
1961	9	28	35.9
1962	9	26	33.7
1963	8	16	55.8
1964	8	16	28.3
1965	11	16	46.0
...
2025	7	21	47.6

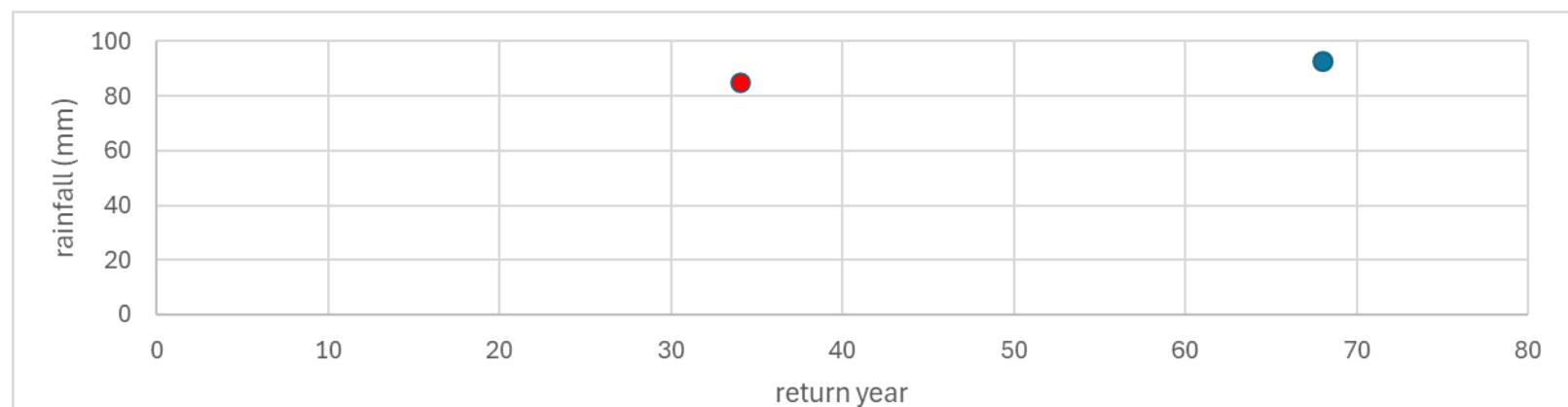

year	month	day	24 hour rainfall (mm)	rank
1993	6	11	92.6	1
2014	8	2	85.3	2
2011	10	24	77.4	3
2008	8	9	76.2	4
2002	11	14	75.4	5
1986	8	25	72.4	6
2000	11	5	66	7
1963	8	16	55.8	8
...
2010	9	6	21.1	68

Plotting

- Plot extreme values versus exceedance rate

year	month	day	24 hour rainfall (mm)	rank
1993	6	11	92.6	1
2014	8	2	85.3	2
2011	10	24	77.4	3
2008	8	9	76.2	4
2002	11	14	75.4	5
1986	8	25	72.4	6
2000	11	5	66	7
1963	8	16	55.8	8
...
2010	9	6	21.1	68

Rainfall $\geq 92.6\text{mm}$ once in 68 years

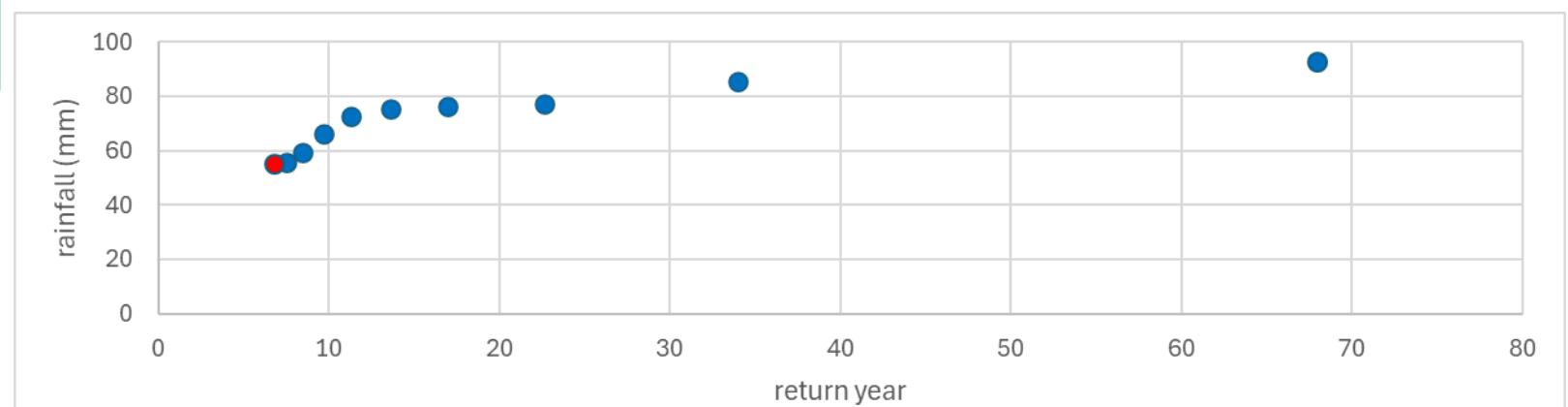


Plotting

- Plot extreme values versus exceedance rate

year	month	day	24 hour rainfall (mm)	rank
1993	6	11	92.6	1
2014	8	2	85.3	2
2011	10	24	77.4	3
2008	8	9	76.2	4
2002	11	14	75.4	5
1986	8	25	72.4	6
2000	11	5	66	7
1963	8	16	55.8	8
...
2010	9	6	21.1	68

Rainfall $\geq 85.3\text{mm}$ twice in 68 years \rightarrow return year $68 / 2 = 34$ years

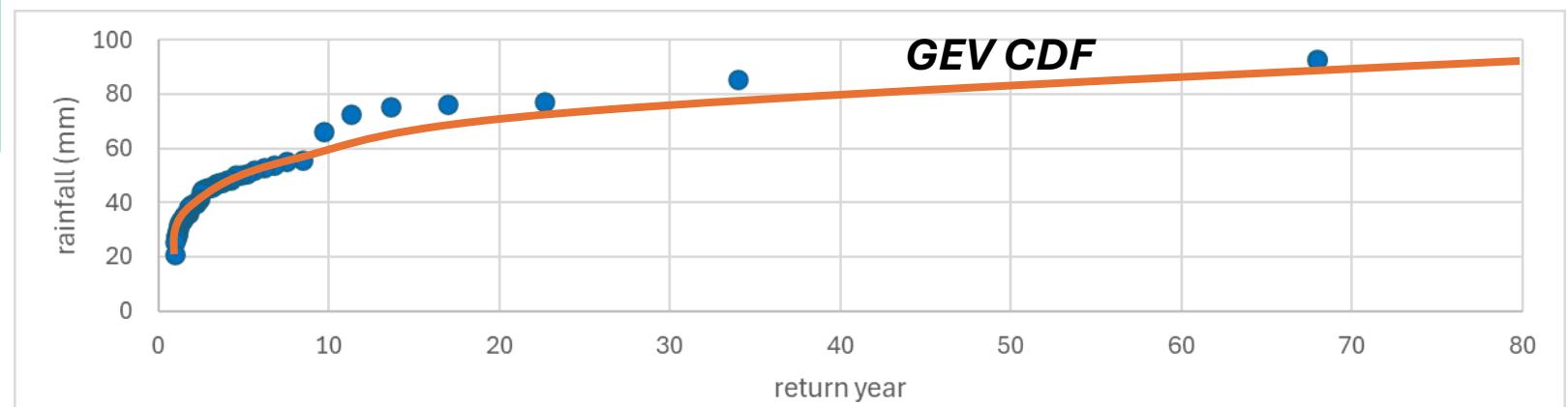


Plotting

- Plot extreme values versus exceedance rate

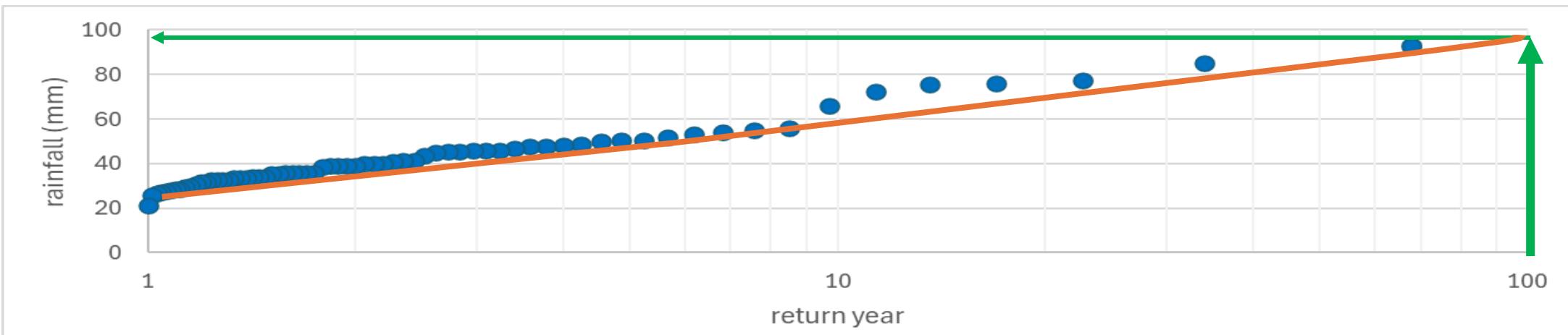
year	month	day	24 hour rainfall (mm)	rank
1993	6	11	92.6	1
2014	8	2	85.3	2
2011	10	24	77.4	3
2008	8	9	76.2	4
2002	11	14	75.4	5
1986	8	25	72.4	6
2000	11	5	66	7
1963	8	16	55.8	8
...
2010	9	6	21.1	68

Rainfall $\geq y$ mm, 'rank' times in 68 years \rightarrow return year $68 / \text{rank} = x$ years



Fitting model to observation data

- Exceedances can be fitted using a GEV CDF


year	month	day	24 hour rainfall (mm)	rank
1993	6	11	92.6	1
2014	8	2	85.3	2
2011	10	24	77.4	3
2008	8	9	76.2	4
2002	11	14	75.4	5
1986	8	25	72.4	6
2000	11	5	66	7
1963	8	16	55.8	8
...
2010	9	6	21.1	68

Rainfall $\geq y$ mm, 'rank' times in 68 years \rightarrow return year $68 / \text{rank} = x$ years

Determine the return period

- Example: designing for a 1 in 100 year event

- use R – **extRemes** package

```
gev_dublin_airport <- fevd(dub_airport$annual_maxima, type = "GEV",
                             na.action = na.exclude)
```

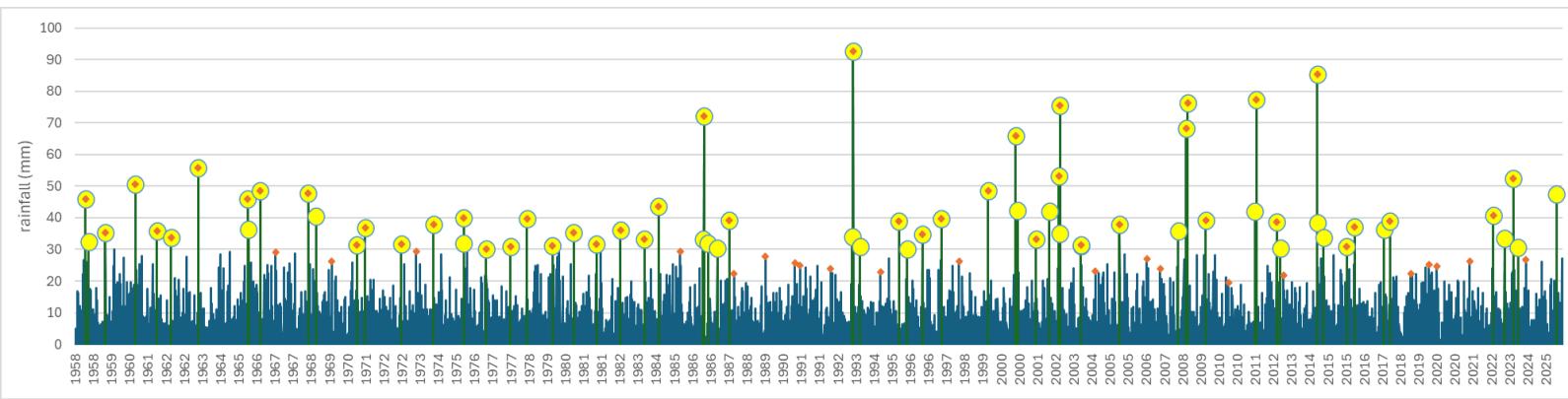
	95% lower CI	Estimate	95% upper CI
10-year return level	52.63323	60.53255	68.43186
50-year return level	63.90395	85.01970	106.13545
100-year return level	66.93663	97.39287	127.84911

location	Named num 35.8
scale	Named num 9.22
shape	Named num 0.154

Fréchet distribution

Extreme analysis rules-of-thumb

- 1 in 10 year event expected on average 6.8 times in 68 years, a 1 in 100 year event may not happen at all (or could happen once maybe)
 - 1 in 10 year event (10 year return period) = 60.5 mm
 - This is exceeded 7 times in the 68 years ~ ok
 - 1 in 100 year event (100 year return period) = 97.4 mm
 - No 100 year return period events ~ ok (max observed = 92.6 mm)
- The maximum extreme at a station has by definition only happened once in the station record: this rainfall amount has a return period ~ equal to the station record in years
 - 68 year station record, max at station has 77 year return period ~ ok


"77-year return level: 92.578"

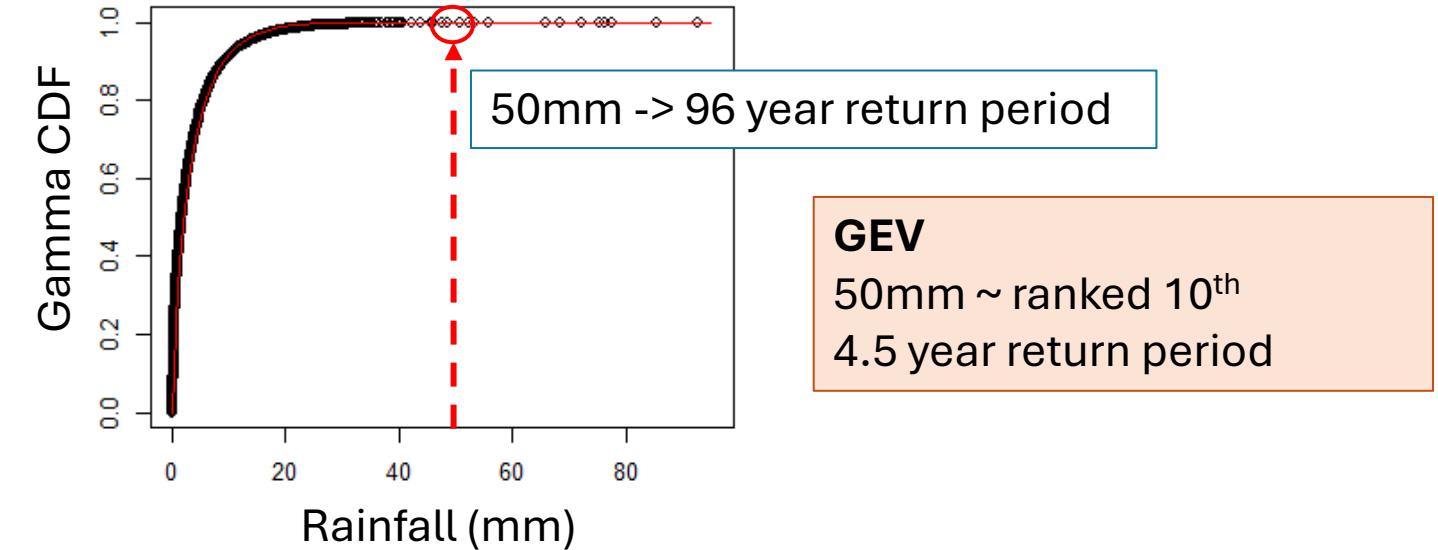
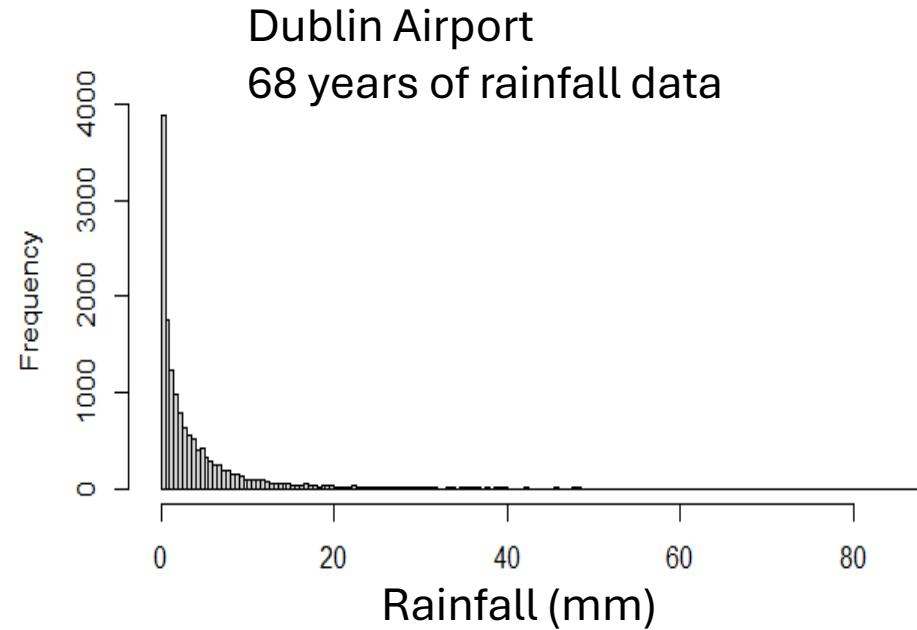
Extreme Value Analysis methods

- GEV using block maxima – maximum annual values
- **Generalised Pareto Distribution (GPD)** using maxima above a threshold (θ)

$$F(x > \theta | \xi, \sigma, \theta) = \exp\left(-\left(1 + \xi \left(\frac{x - \theta}{\sigma}\right)\right)^{-\frac{1}{\xi}}\right)$$

$\xi = \text{shape}$
 $\sigma = \text{scale}$
 $\theta = \text{threshold}$

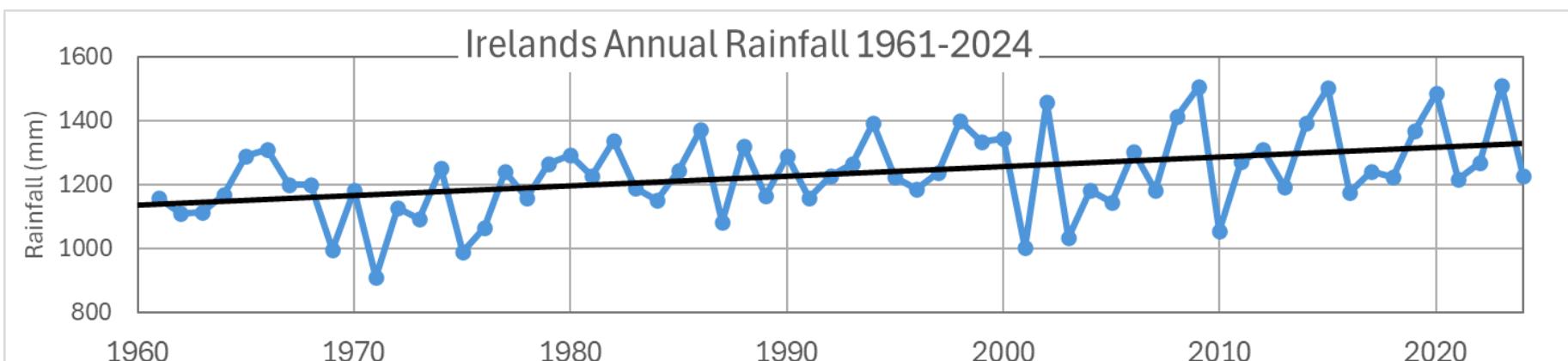
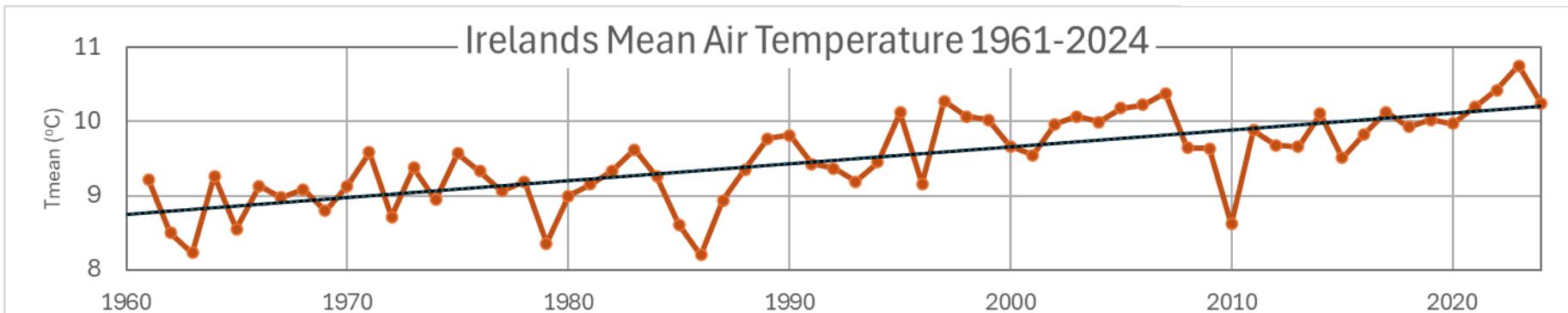
	100-year RP	shape	
GEV	97.4 mm	0.154	$\mu = 35.8 \text{ mm}$
GPD	97.1 mm	0.118	$\theta = 35 \text{ mm}$



- **Depth Duration Frequency** model (DDF) \sim (log-logistic distribution)

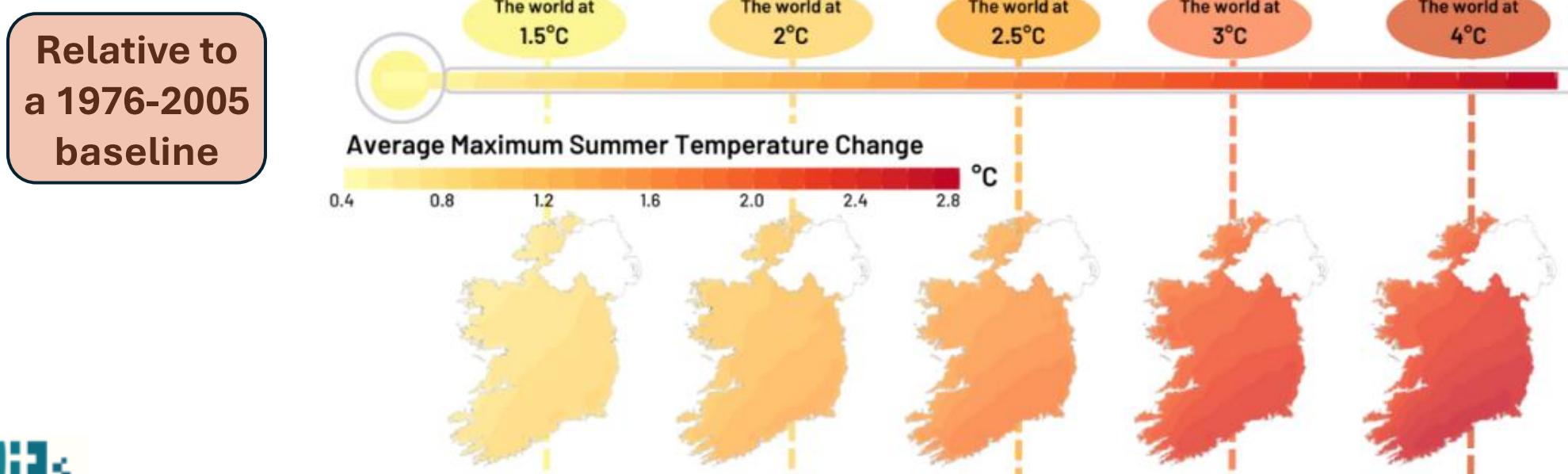
$$R(T, D) = 24 \text{hr_max_median} \times D^{\text{scale}} \times (T - 1)^{\text{shape}}$$

Why use extreme value analysis?

- Distribution of bulk poorly models extreme values
- Rainfall Gamma distribution

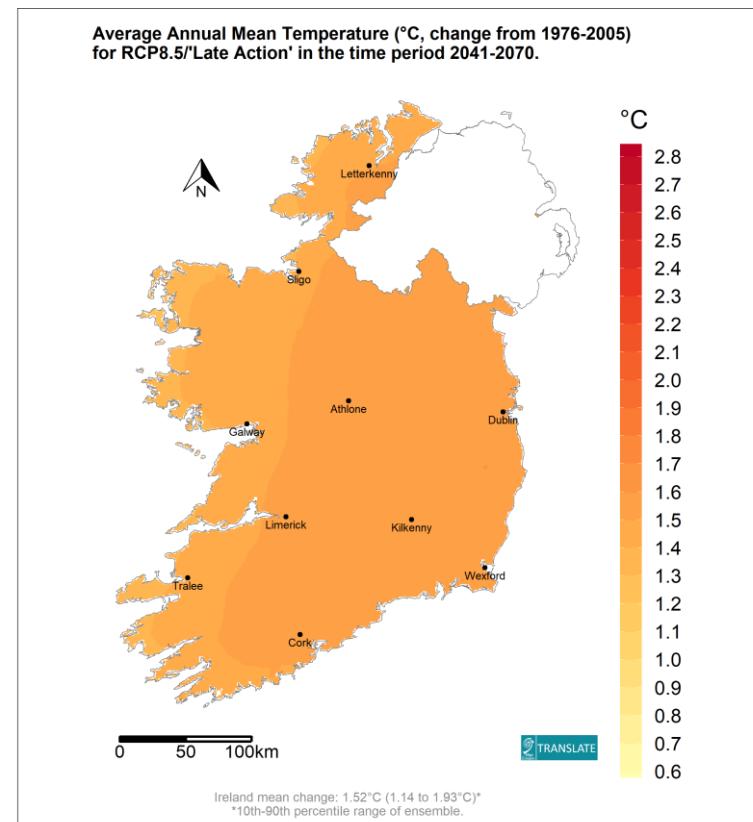
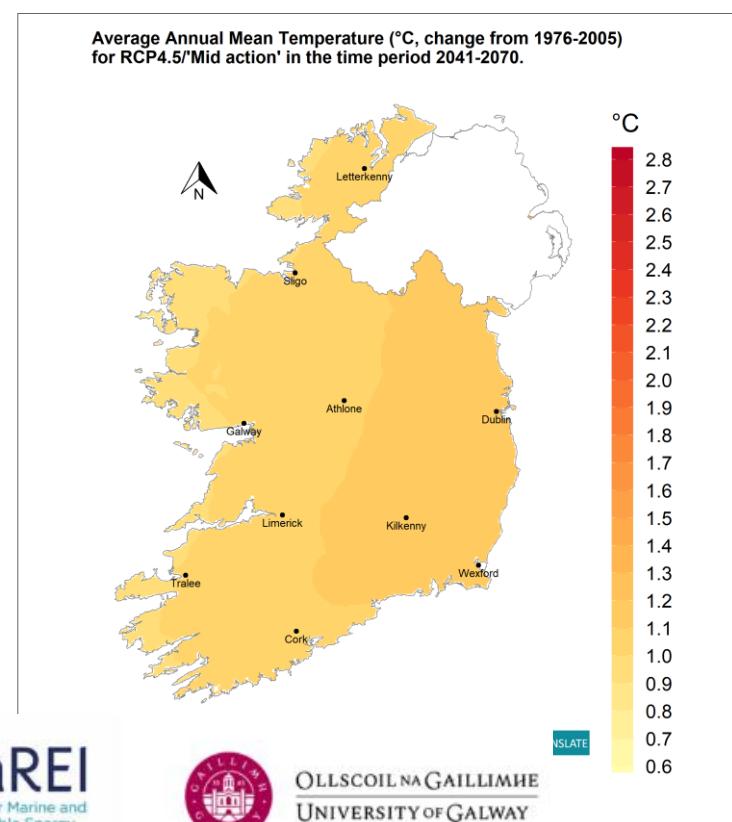


$$f(x|\theta, \alpha) = \frac{x^{\alpha-1} e^{\frac{-x}{\theta}}}{\Gamma(\alpha) \theta^\alpha} \quad \begin{matrix} \alpha > 0 & \text{shape} \\ \theta > 0 & \text{scale} \end{matrix}$$

Extremes in a changing Climate

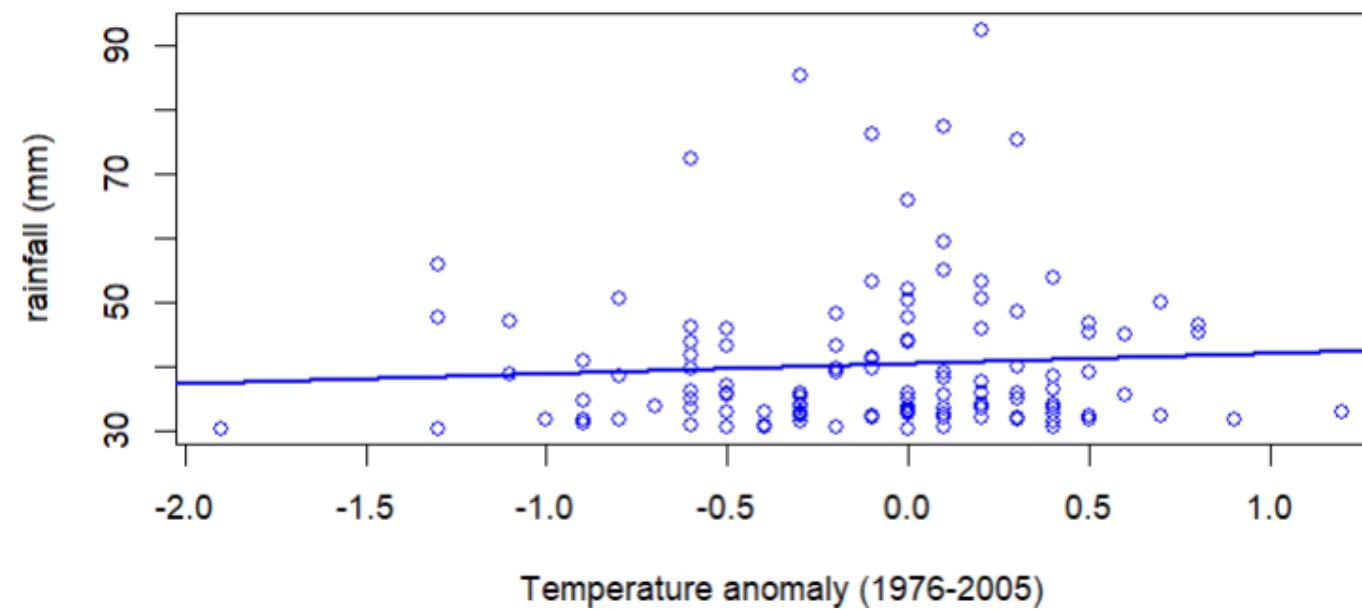

- Changing temperature in observational record
- Clausius-Clapeyron $+1^{\circ}\text{C} \approx 7\%$ (obs data $+1^{\circ}\text{C} \approx 7\%$...)
- Observation based distribution is ***non-stationary***

```
gev_dub_temp <- fevd(dub_airport$annual_max, type = "GEV",
  location.fun = ~ dub_sirport$temp,
  scale.fun = ~ dub_airport$temp)
```


Irelands future Climate – TRANSLATE projections



- Single, reliable source for future climate information for Ireland
- Bias corrected, downscaled (1km x 1km) gridded projections
- Temperature, Rainfall, (Solar, RH, mean wind...)

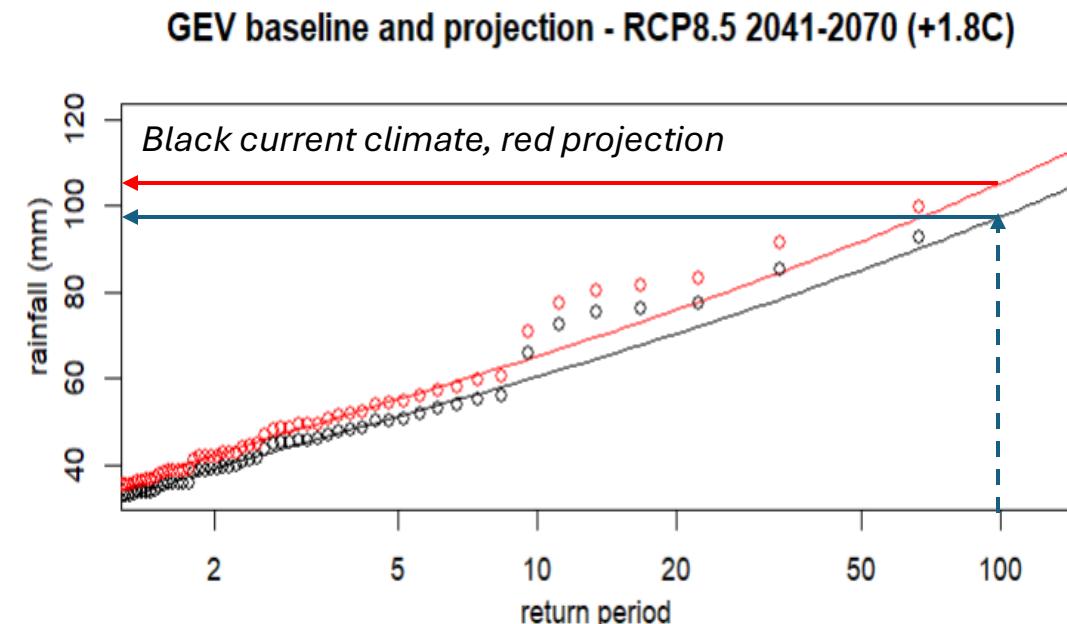
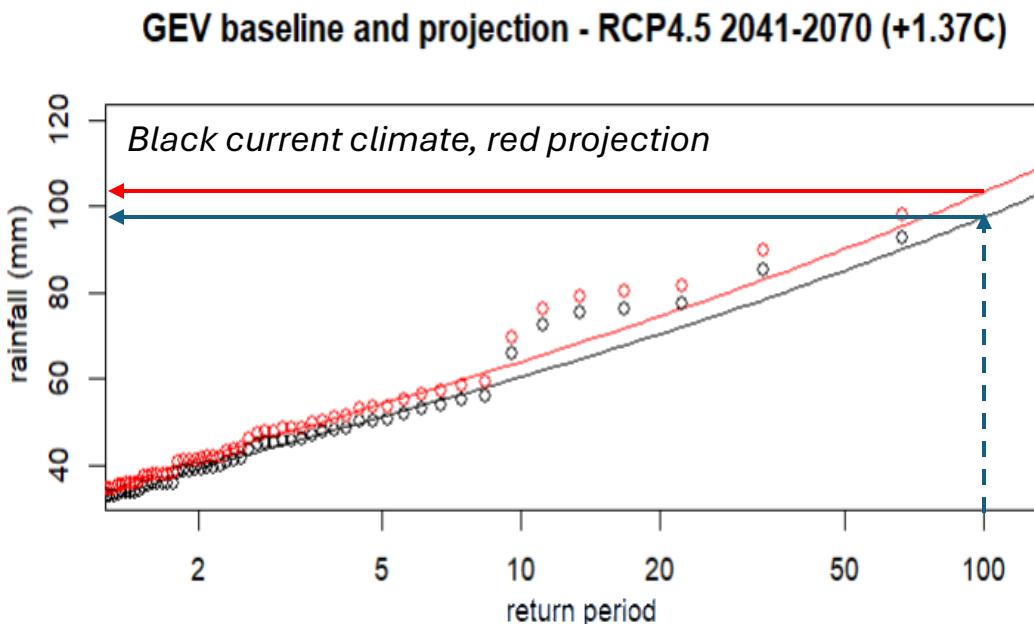
Temperature Projections - TRANSLATE


- RCP – Representative Concentration Pathway
- 2.5 low, 4.5 medium and 8.5 high emission projections

Dublin Airport	RCP	2041-2070
	2.5	+1.17 degC
	4.5	+1.37 degC
	8.5	+1.8 degC

Extremes with Projections

- Determine relationship between extreme rainfall and temperature (α)
- Smoothed temperature (remove effects of NAO, ENSO etc)

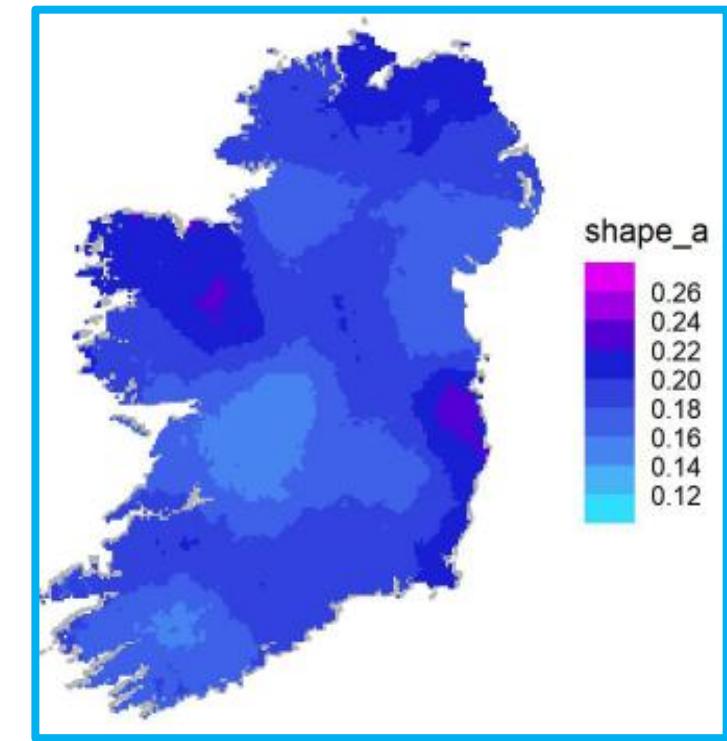
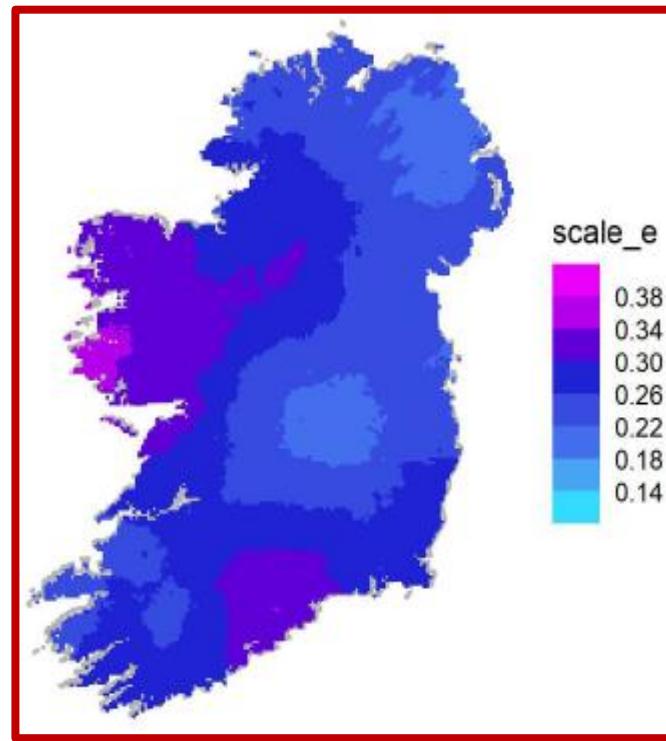
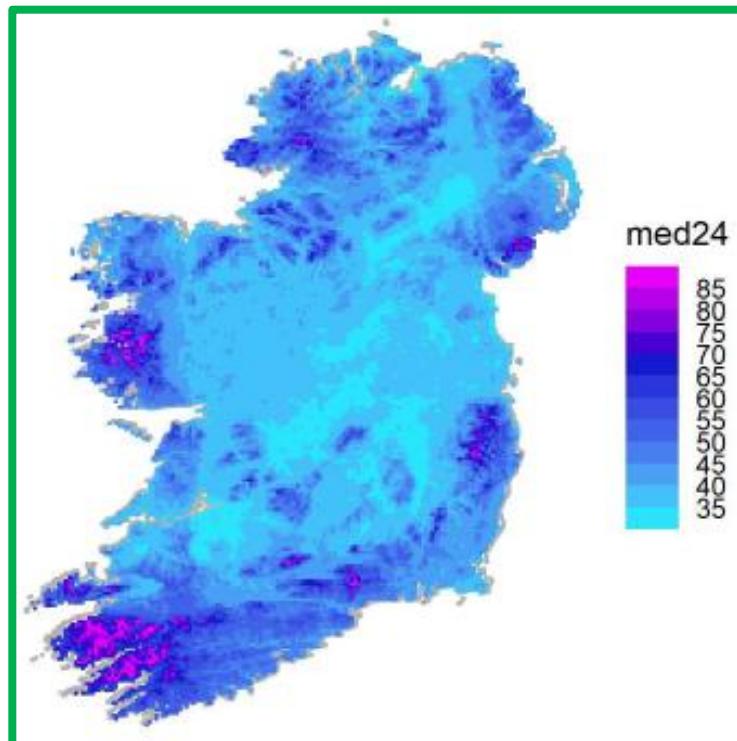
Extremes with Projections

- Adjust GEV CDF location and scale with temperature (shape fixed)

$$\mu = \mu_o \exp\left(\frac{\alpha T'}{\mu_o}\right) \quad \sigma = \sigma_o \exp\left(\frac{\alpha T'}{\mu_o}\right)$$

- Recalculate projected CDF

Summary




- Analysis of **weather data** to determine probability of extreme events
- **Extreme Value Theory**
- **Cumulative Distribution Function (CDF)**
 - **Return period** = one in x -year event = 1 / probability
- Observational data – **independent events**
 - **Sampling** - annual maxima (block maxima), thresholded extremes
- Single parameters – rainfall, temperature, event days
- **Compound extremes** – extreme dryness and temperature...
- **Climate models** – how extremes change as climate changes

DDF log-logistic model

$$R(T, D) = \text{24hr_median} \times D^{e+f \ln(D)} \times (T - 1)^{a+b \ln(D)}$$

- Scale $e + f \ln(D)$, rainfall as a function of duration
- Shape $a + b \ln(D)$, rainfall as a function of return period

